
Learning optimization algorithms with neural
networks
M.Sc. Data Science thesis presentation - AUEB

Nikolaos Stefanos Kostagiolas

Supervisor: Prof. Evangelos Markakis

Table of contents

1. Introduction

2. Related Work

3. Meta-learning with recurrent neural networks

4. Experiments & Results

5. Conclusion

1

Introduction

Origins of machine learning

Learning: the ability of living organisms to acquire new, or modify
existing knowledge, behaviors, skills, values or preferences.

Turing: need of a learning mechanism in computer systems as a key
element towards emulating human intelligence.

Machine Learning: term coined by Arthur Samuel (1959).

Formal definition by Tom Mitchell (1998):
Machine learning is the study of algorithms that:

• improve their performance P
• at some task T
• with experience E

Therefore, a well-defined learning task is given by <P, T, E>.

2

Applications of machine learning

Machine learning is used in settings where:

• Human expertise does not exist (navigating on Mars)
• Humans can’t explain their expertise (speech recognition -
natural language processing)

• Models must be customized (personalized medicine)
• Models are based on huge amounts of data (genomics)

Disclaimer: Machine learning is not a magic wand!

3

A striking difference from human learning

High performance of machine learning model⇔ abundance of data

Machine learning ̸= human learning, latter is faster and way more
sample-efficient:

• Kids are able recognize objects easily after being exposed to few
examples

• People who know how to ride a bike are likely to discover the
way to ride a motorcycle fast with little or even no
demonstration

Question: is it possible for a machine learning model to exhibit
similar properties, i.e. learning new concepts and skills fast with a
few training examples?

Spoiler: yes indeed (especially if Turing’s ”emulating human
intelligence” is still the goal).

4

Solution: ”learning to learn” or simply ”meta-learning”

Meta-learning: aims to introduce generalization capabilities and
sample efficiency to machine learning algorithms.

Generalization: the ability of adapting to new tasks and new
environments that have never been encountered before during
training time

Adaptation: mini learning session during test time but with limited
exposure to the new task configurations.

Profit: The model can complete new tasks without the need of many
training examples because its way of learning them is more efficient.
Thus it has ”learned to learn”.

5

Visualization example of a meta-learning setting

6

Application examples

More importantly: meta-learning can be applied to a variety of
machine learning problems, e.g. supervised learning, reinforcement
learning etc.

Examples of meta-learning tasks include:

• A classifier trained on non-cat images can tell whether a given
image contains a cat after seeing a handful of cat pictures.

• A game bot is able to quickly master a new game.
• A mini robot completes the desired task on an uphill surface
during test even through it was only trained in a flat surface
environment.

• An optimizer trained on a specific task by a gradient descent
variant can perform efficiently tasks of the same family.

7

Related Work

Meta-learning: the initial steps

Initial studies in the field of meta-learning:

• Schmidhuber’s legacy studies between late 1980s and early
1990s:

• General idea: enhance recurrent neural networks with the ability
to modify their own weights.

• Downside: high computational requirements!

• Hochreiter et al., 2001:
• General idea: Use an LSTM (Long Short-Term Memory) network as
an optimizer in order to train multi-layer perceptrons.

• Bengio et al., 2002:
• General idea: Replace backpropagation with a more
biologically-plausible update algorithm

8

Meta-learning: scaling up to form a field during the neural net-
work resurgence

Despite initial plateaus, meta-learning has become a hot topic within
the ML research community with several well known use cases:

• Hyper-parameter and neural network optimization,
• Deep learning architecture search
• Few-shot learning
• Speeding-up reinforcement learning

9

Approaches to meta-learning: Optimizer learning

Work initiated with Hochreiter et al.’s work discussed earlier

General idea

• Learn an update rule for the parameters of a neural network
instead of devising it.

• Meta-learner: neural network, typically a recurrent neural
network variant that learns the update rule

• Learner: another network that is updated by the meta-learner.
• The meta-learner network acts as the optimizer.
• Widely applied with general success [1], [2], [3], [4], [5], [6].
• Results in a more efficient update rule than that of a
hand-written optimizer (?) while also saving time by bypassing
hyperparameter tuning.

10

Approaches to meta-learning: Optimizer learning

Motivation behind casting optimizer design as a learning problem:
existing common elements among the different algorithms used for
continuous optimization.

• Operation in an iterative fashion where the iterate is a single
point in the domain of the objective function.

• Random initiation of the iterate point across the domain.
• Modification of the iterate at each iteration using a step vector
update rule.

• An update rule that takes into account the previous or current
gradients of the objective function.

11

Meta-learning with recurrent
neural networks

Problem definition

General practice in machine learning: express each task in the form
of an optimization problem where the desired outcome is to
optimize an objective function f(θ) over some domain θ ∈ Θ

Usually this is done by applying a form of gradient descent in a
sequence of updates of the form:

θt+1 = θt − αt∇f(θt)

Several optimization algorithms have surfaced in the process,
namely momentum, Rprop, Adagrad, RMSprop and ADAM.

12

Problem definition

Problem: each of the aforementioned algorithms performs well by
exploiting problem-specific structures at the expense of
generalization

Solution: learn the update rule by using an optimizer model mϕ,
specified by parameters ϕ in order to update the parameters of our
loss function (also referred to as the optimizee) in the following
form:

θt+1 = θt + gt(∇f(θt), ϕ)

Optimizer is constantly informed about the performance of the
optimizee f and, by updating its parameters ϕ it varies its update
rule proposals in order to infer the optimal update rule for updating
the optimizee’s parameters θ, thus maximizing its performance.

13

Intuitive visualization

14

Architecture details

In our case, the learned update will take the form of a LSTM (a
recurrent neural network variant). Why?

• Requirement #1: a sequential learning architecture is required -
gradient descent is, at its very essence, a sequence of updates
on separate states in-between.

• Reason for requirement #1: reasoning about previous events
that occurred during the optimization process in order to shape
better future update rules.

• Architectural solution #1: employ a recurrent neural network
architecture that allows information from earlier points in time
to persist to later ones.

15

Architecture details

But why do we specifically need LSTMs instead of a plain recurrent
neural network?

• Requirement #2: information about previous states, not only
has to affect later ones but it also has to be maintained.

• Reason for requirement #2: information regarding how previous
suggested updates of our optimizer affected the performance of
the optimizee has to be accessed in some way.

• Architectural solution #2: employ a Long Short-Term Memory
network (or simply LSTM) with a memory-like feature called the
cell state.

• Disclaimer: Not novel ideas, introduced earlier mainly by
Andrychowicz et al., 2016 and widely-applied later.

16

Learning phase details

So how is the optimizer trained?

• Let the final optimizee parameters be written as θ∗(f, ϕ) where ϕ

are the optimizer parameters and f is the function we are trying
to optimize (or simply the optimizee).

• Thus, the expected loss with relation to the optimizer can be
written as:

L(ϕ) = Ef←−D
[
f(θ∗(f, ϕ))

]
where f is drawn according to some distribution D of functions.

• As it is already mentioned, our LSTM optimizer network m
outputs the update steps gt and is parameterized by ϕ, while its
state at time t can be denoted as ht.

• But what if we wanted to relate the expected loss with respect
to the parameter values throughout the whole optimization
trajectory?

17

Learning phase details

The previous expected loss definition is equal to the following:

L(ϕ) = Ef
[T∑
t=1

wtf(θt)
]

where
θt+1 = θt + gt[

gt
ht+1

]
= m(∇t,ht, ϕ)

We can, thus, perform gradient descent on ϕ in order to minimize
L(ϕ) which should give us an optimizer that is capable of optimizing
f efficiently.

18

Learning phase details

Basically this is nothing we wouldn’t expect: the loss of the
optimizer neural net (i.e. our LSTM) is simply the summed training
loss of the optimizee as it is trained by the optimizer.

The optimizer takes in the gradient of the optimizee as well as its
previous state, and outputs a suggested update that we hope will
reduce the optimizee’s loss as fast as possible.

19

Experiments & Results

Experimental setup

• Optimizer architecture employed: two LSTM layers with 20
hidden units per layer.

• Optimizing the optimizer: ADAM optimizer with learning rate
selected by random search.

• Each epoch consists of 100 iterations. After each epoch the
performance of the optimizer is evaluated (no training during
evaluation phase). Every 20 iterations, the parameters of the
optimizer are updated using backpropagation.

• Best optimizer is chosen based on its final test loss on a novel
sampled test set.

• Comparison with well-known and widely-used optimizers in
literature: SGD, RMSprop, ADAM and SGD with Nesterov
Momentum.

• Experiment setting identical to the one used in the study of
Andrychowicz et al., 2016.

20

Experiment #1 - Quadratic loss functions

Motivation: most loss functions are in quadratic form

Task: optimization of synthetic quadratic functions defined in the
10-dimensional space (here minimization of squared error loss):

f(θ) = ∥Wθ − y∥22

21

Experiment #2 - MNIST

Motivation: baseline for most computer vision systems.

Task: optimization of a single-hidden-layer neural network
consisting of 20 units on the MNIST handwritten digits dataset, used
Multi-layer Perceptron crossentropy loss as the minimization
objective.

Dataset description: 60.000 training examples and 10.000 test
examples of 28x28 greyscale images, each one displaying a
handwritten number digit.

22

Experiment #2 - MNIST

23

Experiment #3 - generalization to different model architectures

Motivation: test the generalization capabilities of the learned
optimizer on MNIST on different model architectures, albeit being
similar to the one it was originally trained on.

Task:

• alter the model architecture by:
• introducing more hidden units (40)
• adding more layers (2).

• check if the learned optimizer can adapt to it by comparing its
performance with optimizers that were trained on these very
architectures.

• stick to MNIST for the time being.

24

Experiment #3 - generalization to different model architectures

25

Experiment #3 - generalization to different model architectures

26

Experiment #4 - generalization to different learning dynamics

Motivation: test the generalization capabilities of the learned
optimizer on MNIST on different learning dynamics, where it is
expected to not perform very well due to differences in the
optimization landscapes.

Task:

• alter the model architecture by changing the activation function
from sigmoid to ReLU.

• check if the learned optimizer can adapt to it by comparing its
performance with optimizers that were trained on these very
architectures.

• stick to MNIST for the time being.

27

Experiment #4 - generalization to different learning dynamics

28

Experiment #5 - generalization to different MNIST-like datasets

Motivation: learned optimizer performs reasonably well→
generalization to similar tasks to those it was trained on.

Task: compare the performance of the optimizer trained on the
MNIST dataset on similar datasets like FashionMNIST and EMNIST
against its standard hand-written counterparts trained on these very
datasets.

Dataset description:

• FashionMNIST: 60.000 training examples and 10.000 test
examples in the form of 28x28 greyscale images, each one of
which belongs to 10 categories, encapsulates a harder problem
than simply recognizing digits.

• EMNIST Letters: 145.600 28x28 greyscale images depicting
characters belonging to 26 letter classes.

29

Experiment #5 - generalization to different MNIST-like datasets

30

Experiment #5 - generalization to different MNIST-like datasets

31

Experiment #5 - generalization to different MNIST-like datasets

32

Experiment #5 - generalization to different MNIST-like datasets

33

Experiment #6 - generalization to entirely different datasets

Motivation: learned optimizer perform reasonably well in settings
dissimilar to its training regime→ capable of adapting beyond tasks
of the same family it was trained on.

Task: compare the performance of the optimizer trained on the
MNIST dataset on dissimilar datasets like CIFAR-10 and SVHN against
its standard hand-written counterparts trained on these very
datasets.

Dataset description:

• CIFAR-10: 60.000 32x32 coloured images divided in 10 classes
(6.000 image examples per class) the 50.000 of which constitute
the training set while the rest 10.000 form the test set.

• SVHN: Another real-world 32x32 coloured image dataset that
consists of a training set of 73257 and a test set of 26032 images.

34

Experiment #6 - generalization to entirely different datasets

35

Experiment #6 - generalization to entirely different datasets

36

Experiment #6 - generalization to entirely different datasets

37

Experiment #6 - generalization to entirely different datasets

38

Conclusion

Initial goals

The aims of this study were twofold:

• Extend Andrychowicz et al.’s earlier work that demonstrated
that optimizer design could be cast as a learning problem by
testing an optimizer’s generalization capabilities at optimizing
functions stemmed from the same distribution.

• Systematically examine whether achieving considerable degrees
of cross-task transfer between unrelated settings was feasible,
which was also a claim made by that paper, albeit being
reinforced with limited evidence.

39

What did we notice?

From our experiments it is easily made clear that learned optimizers:

• outperform by a wide margin their standard handwritten
counterparts when tested on unseen examples from the same
dataset.

• show a remarkable degree of knowledge transfer between
optimization tasks stemming from the same family.

• are capable of generalizing to different models as long as heavy
changes to the learning dynamics aren’t made.

• don’t exhibit much generalization capabilities when applied to
tasks outside of their training regime likely due to vastly large
differences in data structure and number of parameters.

• limited scaling both regarding computational costs and
completion time (each epoch can take as much as 2.5 hours to
be completed depending on dataset), hindered unbiased
experiment selection.

40

What did we learn?

• The choice of learned optimizers should be promoted over
using hand-written ones in most single-task scenarios, majority
of the settings in the deep learning literature.

• Notable degrees of generalization in related tasks may exist due
to:

• a) optimum memorization (potential reason for lengthy
completion times) and rapid convergence on familiar loss
landscapes and/or

• b) distillation of important information that is common between
tasks

• Absolute multi-task performance based on knowledge transfer
is still out-of-hand.

• Initial claims of models that ”learn-how-to-learn” can’t be
confirmed. Resulting models resemble ”learn-what-to-learn”
approaches relevant to transfer-learning/multi-task learning
strategies.

• Bottom line: Welcome to the no-free lunch theorem :) 41

What did we learn?

42

Thank you & Q/A

Thanks for lending me your ears.

It’s time to dispel the black magic we just discussed about :)

43

References i

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. de Freitas.
Learning to learn by gradient descent by gradient descent, 2016.

Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. de Freitas.
Learning to learn without gradient descent by gradient descent.

K. Li and J. Malik.
Learning to optimize, 2016.

K. Li and J. Malik.
Learning to optimize neural nets, 2017.

S. Ravi and H. Larochelle.
Optimization as a model for few-shot learning.

44

References ii

O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G.
Colmenarejo, M. Denil, N. de Freitas, and J. Sohl-Dickstein.
Learned optimizers that scale and generalize, 2017.

45

	Introduction
	Related Work
	Meta-learning with recurrent neural networks
	Experiments & Results
	Conclusion

