
ATHENS UNIVERSITY OF ECONOMICS AND
BUSINESS

MSC THESIS

Learning Optimization Algorithms
with Neural Networks

Author:
Nikolaos Stefanos
KOSTAGIOLAS

Supervisor:
Prof. Dr. Evangelos

MARKAKIS

A thesis submitted in fulfillment of the requirements
for the degree of MSc in Data Science

in the

Athens University of Economics and Business
Department of Computer Science

September 18, 2019

http://www.university.com
http://www.university.com
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com




iii

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Abstract
Evangelos Markakis

Department of Computer Science

MSc in Data Science

Learning Optimization Algorithms with Neural Networks

by Nikolaos Stefanos KOSTAGIOLAS

The field of Machine Learning owes much for its success to the ability of its
algorithms to automatically discover patterns in data. However, these al-
gorithms are still written by hand, despite them being similar in their core
element, i.e. the usage of past gradients as a means of locally updating their
search for optima. This commonality naturally leads to the debate of whether
one could learn those algorithms, instead of designing them manually, i.e.,
can we learn the optimal parameters of an optimization algorithm that we
would like to use for a machine learning problem? Should these “learned” al-
gorithms perform better than their manually-designed counterparts, it could
assist in lessening the time spent for hyperparameter tuning among ML prac-
titioners and researchers alike, while also clearing the way for more general-
ized approaches in cases where an optimizer is needed. However, although
recent approaches in the field of optimizer learning or, as it is commonly
dubbed, in the field of meta-learning have resulted in learned optimizers
that outperform their standard variants in tasks they have been trained on,
they have showcased limited examples of their generalization capabilities,
i.e. their ability to perform well in tasks outside of their training regime. The
goal of the thesis is to explore the generalization capabilities of this form of
meta-learning that usually comes in the form of a recurrent neural network
optimizer, thus attempting to extend previous studies on learning optimiza-
tion algorithms.

The thesis also involves an implementation of the relevant experiments in
PyTorch, a recently introduced deep learning framework that is widely pop-
ular throughout the research community and the code will be open-sourced
in order to facilitate further contributions towards answering this research
question.

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com




Οικονομικό Πανεπιστήμιο Αθηνών

Διπλωματική Εργασία

Εκμάθηση Αλγορίθμων

Βελτιστοποίησης με Νευρωνικά Δίκτυα

Συγγραφέας:

Νικόλαος Στέφανος

Κωσταγιόλας

Επιβλέπων:

Επικ. Καθηγητής

Ευάγγελος Μαρκάκης

Περίληψη: Το πεδίο της Μηχανικής Μάθησης χρωστάει μεγάλο μέρος της επιτυ-

χίας του στην ικανότητα των αλγορίθμων του στο να ανιχνεύουν αυτόματα μοτίβα

σε δεδομένα. Παρ΄όλα αυτά οι αλγόριθμοι αυτοί ακόμα γράφονται χειροκίνητα, μο-

λονότι εμφανίζουν ομοιότητες ως προς το κεντρικό στοιχείο τους, το οποίο είναι

η χρήση προηγούμενων κλίσεων συναρτήσεων ως μέσο για την τοπική επικαιρο-

ποίηση της αναζήτησής τους για ακρότατα. Το κοινό στοιχείο αυτό οδηγεί φυσικά

στην έγερση του ερωτήματος σχετικού με το αν θα μπορούσαμε να μάθουμε τους

αλγορίθμους αυτους αντί να τους σχεδιάζουμε χειροκίνητα, δηλαδή αν είναι εφικτό

να μάθουμε τις βέλτιστες παραμέτρους ενός αλγόριθμου βελτιστοποίησης ώστε να

τον χρησιμοποιήσουμε σε ένα πρόβλημα μηχανικής μάθησης. Σε περίπτωση που

αυτοί οι ¨εκμαθημένοι’ αλγόριθμοι αποδίδουν καλύτερα από τους χειροκίνητα σχε-

διασμένους, κάτι τέτοιο θα σήμαινε πως θα μπορούσαν να βοηθήσουν στη μείωση

του χρόνου που απαιτείται για την εύρεση ιδανικών υπερπαραμέτρων από όσους

εφαρμόζουν τεχνικές Μηχανικής Μάθησης αλλά και τους ερευνητές και παράλ-

ληλα θα ξεκαθάριζε το τοπίο ώστε να γίνεται χρήση πιο γενικευμένων μεθόδων

σε περιπτώσεις όπου είναι αναγκαία η εύρεση ενός βελτιστοποιητή. Παρ’ όλα

http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com


ii

αυτά, αν και οι πρόσφατες προσεγγίσεις στο πεδίο της εκμάθησης βελτιστοποι-

ητων ή, όπως αλλιώς αναφέρεται στην επιστημονική βιβλιογραφία, στο πεδίο της

μετα-μάθησης έχουν οδηγήσει σε “εκμαθημένους” βελτιστοποιητές που ξεπερ-

νάνε σε απόδοση τους καθιερωμένους αντιπάλους τους σε καθήκοντα στα οποία

έχουν εκπαιδευτεί, έχουν επιδείξει περιορισμένα παραδείγματα όσον αφορά τις δυ-

νατότητες γενίκευσής τους, δηλαδή την ικανότητά τους να αποδώσουν καλά και

σε καθήκοντα που βρίσκονται εκτός των πλαισίων εκπαίδευσής τους. Ο στόχος

αυτής της διπλωματικής εργασίας είναι να διερευνήσει τις ικανότητες γενίκευσης

αυτής της μορφής μετα-μάθησης η οποία συνδέεται με βελτιστοποιητές υπό τη μορ-

φή βελτιστοποιητών-ανατροφοδοτούμενων νευρωνικών δικτύων, επιχειρώντας έτσι

να επεκτείνει προηγούμενες μελέτες στην εκμάθηση αλγορίθμων βελτιστοποίησης.

Η εργασία αυτή περιλαμβάνει επίσης μια υλοποίηση των ανάλογων πειραμάτων σε

PyTorch, ένα framework βαθιάς μάθησης το οποίο είναι ευρέως δημοφιλές ανά

την ερευνητική κοινότητα και ο κώδικας θα είναι ανοιχτός, προκειμένου να διευκο-

λυνθούν έτσι μελλοντικές συνεισφορές προς την απάντηση αυτού του ερευνητικού

ερωτήματος.



iii

Acknowledgements
First and foremost, I am grateful for my advisor Evangelos Markakis for his
support and guidance during this brief but rather productive period that
took for this thesis to be completed. I also thank him for providing me
with the freedom to work on topics that constitute my scientific interests and
which I regard as of great importance: generalization and learning to learn.
Prof. Dr. Markakis trusted me with this thesis and, even though learning
wasn’t his area of expertise, led me towards a result for which I am proud
of. I am sure that when I will look back on it in the future I will always re-
member it as the starting point of my scientific career towards tackling many
interesting problems that exist out there waiting to be solved.

Secondly, I would like to thank Prof. Dr. Titsias who assisted me in mat-
ters related to machine learning. Our communication was excellent through-
out the course of this thesis and I hope it will remain as such in the future. I
would like to also thank all the committee members that agreed to be there
during the defence of this thesis and, especially, the director of the MSc in
Data Science, Prof. Dr. Vassilis Vassalos who agreed to let me undertake a
research-oriented thesis instead of the default industrial one that was origi-
nally intended for all the students of the program.

Lastly, I would like to thank my family for all their support during this
strenuous one-year period that spanned the duration of the course.





v

Contents

Abstract iii

Acknowledgements iii

1 Introduction 1

2 Related Work 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Meta-Learning in Neural Networks: A brief historical overview 6
2.3 Meta-Learning Strategies . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Recurrent Models . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Metric Learning . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Optimizer Learning . . . . . . . . . . . . . . . . . . . . 8
2.3.4 Model-initialization Learning . . . . . . . . . . . . . . . 8

2.4 Learning to Optimize . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Approaches for Meta-learning 11
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Learning Optimizers using Recurrent Neural Networks . . . . 12

3.2.1 Parameter Sharing & Preprocessing . . . . . . . . . . . 14

4 Experiments & Results 17
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Quadratic Loss Functions . . . . . . . . . . . . . . . . . . . . . 18
4.3 MNIST and Related Datasets . . . . . . . . . . . . . . . . . . . 18

4.3.1 Generalization to Different Architectures . . . . . . . . 21
4.3.2 Generalization to Different Learning Dynamics . . . . 21
4.3.3 Generalization to Different MNIST-like Datasets . . . . 23

4.4 More Complex Datasets . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Generalization on Entirely Different DMMNBatasets . 24

5 Conclusion 31
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 35





vii

List of Figures

1.1 Intuition behind opting for meta-learned optimizers instead of
hand-crafted ones (Source: https://bair.berkeley.edu/blog/) . 2

1.2 Example of optimum memorization (Source: https://bair.berkeley.edu/blog/) 3
1.3 Example of a meta-learned optimizer that memorizes parts of

model parameters (Source: https://bair.berkeley.edu/blog/) . 3

2.1 Various meta-learning applications (Source: https://bair.berkeley.edu/blog/) 7
2.2 Example of the recurrent model approach where xt are the in-

put vectors and yt are their corresponding labels (Source: San-
toro et al., 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 General structure of optimization algorithms . . . . . . . . . . 9

3.1 An example of recurrent neural network with some input xt
and output ht in its rolled (left part of figure) and unrolled state
(right part of figure) (Source: http://colah.github.io/posts/2015-
08-Understanding-LSTMs/) . . . . . . . . . . . . . . . . . . . . 12

3.2 Computational graph used for computing the optimizer gra-
dients (Source: Andrychowicz et al., 2016) . . . . . . . . . . . . 14

3.3 Example of coordinatewise LSTM optimizer. Notice that all
LSTM parameters are shared while hidden states are sepa-
rated. (Source: Andrychowicz et al., 2016) . . . . . . . . . . . . 15

4.1 Comparison between standard optimizers and learned opti-
mizer (LSTM) - Black-box 10-variable quadratic function . . . 19

4.2 Examples from the MNIST dataset and their corresponding la-
bels (Source: https://corochann.com/mnist-dataset-introduction-
1138.html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Comparison between standard optimizers and learned opti-
mizer (LSTM) - MNIST . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Comparison between standard optimizers and learned opti-
mizer (LSTM) - MNIST (40 hidden units) . . . . . . . . . . . . 21

4.5 Comparison between standard optimizers and learned opti-
mizer (LSTM) - MNIST (2 hidden layers) . . . . . . . . . . . . 22

4.6 Comparison between standard optimizers and learned opti-
mizer (LSTM) - MNIST (ReLU activation function) . . . . . . . 22

4.7 Examples from the FashionMNIST dataset. Each class takes
three rows. (Source: https://github.com/zalandoresearch/fashion-
mnist) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



viii

4.8 Comparison between standard optimizers and learned opti-
mizer (LSTM) - FashionMNIST (LSTM optimizer was trained
on MNIST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.9 Examples from the EMNIST Letters dataset. Here examples
that depict the letter B are shown (Source:https://statsmaths.github.io/stat395-
f17/class20/). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.10 Comparison between standard optimizers and learned opti-
mizer (LSTM) - EMNIST Letters (LSTM optimizer was trained
on MNIST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.11 Examples from the CIFAR-10 dataset along with their corre-
sponding labels (Source: https://www.cs.toronto.edu/ kriz/cifar.html). 27

4.12 Examples from the SVHN dataset (Source: http://ufldl.stanford.edu/housenumbers/) 28
4.13 Comparison between standard optimizers and learned opti-

mizer (LSTM) - CIFAR-10 (LSTM optimizer was trained on
MNIST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.14 Comparison between standard optimizers and learned opti-
mizer (LSTM) - SVHN (LSTM optimizer was trained on MNIST). 29



1

Chapter 1

Introduction

Machine Learning took its name in 1959 by Arthur Samuel and constitutes
the scientific field that studies the algorithms and models that are used by
computers in order for them to become increasingly better at performing a
specific task. Thus, it addresses the question that Alan Turing posed in his
seminal paper "Computing Machinery and Intelligence" (Turing, 1995) re-
lated to whether machines can imitate human learning, a process that is ar-
gued as being essential for building artificially intelligent systems. Machines
can exhibit learning capabilities in a way that was formally defined by Tom
M. Mitchell as: "A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P if its performance at tasks
in T, as measured by P, improves with experience E".

It is generally accepted that the field of Machine Learning owes its success
to the distinctive capability of its systems to automatically discover patterns
in data. However, the very algorithms which empower that "learning" are
still designed by hand. Therefore, it is natural to wonder whether the pro-
cess of designing these algorithms could be cast as a learning problem and,
given that this proves to be feasible, how do these learned optimizers fare
against their handwritten counterparts. The field of study that deals with
the aforementioned problems is often dubbed "learning to learn" or simply
"meta-learning".

The reasons for opting to learn an optimization algorithm instead of using
one that already exists are twofold: first comes the fact that many optimiz-
ers, the conception of which assumes convexity, are applied to problems that
involve optimizing non-convex functions; this could be overcome by using
optimizers that are learned under settings that are similar to the ones that
they will be practically used at. Secondly, developing a novel optimization
algorithm by hand is a lengthy and strenuous process that can take months
or even years, thus delaying the progress of research; learning that algorithm
could, instead, save us both time and manual labour.

However, there exist several different approaches to meta-learning which
can be divided into three distinct classes:

• approaches towards learning what to learn the goal of which is to learn
a flexible base-model that can be applied successfully on a variety of
related tasks. This is done by distilling the important information that
is common among these tasks into the parameters of this model.



2 Chapter 1. Introduction

FIGURE 1.1: Intuition behind opting for meta-learned
optimizers instead of hand-crafted ones (Source:

https://bair.berkeley.edu/blog/)

• learning which model to learn, a strategy that is related with neural ar-
chitecture search, i.e. the process of finding the ideal model architecture
to tackle a specific problem.

• learning how to learn, which aims towards acquiring knowledge related
to specific patterns that may be present in the behaviours of the differ-
ent learning algorithms used and using it to define novel ones.

When thinking about meta-learning it is also important to contemplate
the desired generalization capabilities of the final model. Generalization
refers to the ability of a model to be able to maintain similar levels of perfor-
mance on unseen test examples stemming from the same class from which
the examples it was trained on were drawn from. In standard machine learn-
ing, a task is defined by a dataset that contains a set of examples and their
corresponding labels (i.e. the classes to which they belong) which is used for
model training. However, in the field of meta-learning the dataset is charac-
terized by a meta-training set consisting of several different objective func-
tions while the meta-test set is composed of objective functions of the same
family. Therefore, in our case, generalization refers to the ability of a model
(in our case an optimizer) to perform well on a variety of tasks.

The extent of generalization displayed by a learned optimizer can vary
with relation to the way its train and test sets of tasks are shaped. For in-
stance, if we neglect the need for generalization in exchange for an optimizer



Chapter 1. Introduction 3

that performs best in a single-case scenario we could evaluate its perfor-
mance on the same objective functions that were used for its training. How-
ever, this may indicate that, instead of learning how to reach an optimum, an
optimizer trained that way may instead memorize the optimum and, thus,
converge to it at every single run. Memorizing optima can be a strenuous
process that leads to learned optimizers that often take longer to converge
than standard optimizers, therefore pressing the need for learned optimizers
that are capable of generalizing to different objective functions.

FIGURE 1.2: Example of optimum memorization (Source:
https://bair.berkeley.edu/blog/)

The difference between the objective functions that constitute the train
and test sets can vary. If we opt to check a learned algorithm’s performance
on tasks that are related then the memorization problem still remains, this
time in the form of the optimizer memorizing parts of a model’s parameters
that refer to the commonalities between these tasks. Consequently, due to
baring resemblances to the learning-what-to-learn approach discussed earlier,
it could be argued that a learned optimizer that cannot generalize further
lacks the ability to learn how to learn.

FIGURE 1.3: Example of a meta-learned optimizer
that memorizes parts of model parameters (Source:

https://bair.berkeley.edu/blog/)

In order to achieve learning how to learn our conception regarding gen-
eralization should be further solidified, by incorporating the need of learned



4 Chapter 1. Introduction

optimizers that perform well even when tested on tasks they are unfamiliar
with. Parameter memorization in these settings is discouraged by the fact
that the optimal neural network weights are entirely different between unre-
lated tasks. For example, it is likely that even the weight values of the shal-
low layers (i.e. layer that usually encapsulate generic information) between
models trained on MNIST (LeCun and Cortes, 2010) and models trained on
CIFAR (Krizhevsky, Nair, and Hinton, 2014) differ greatly. However, there
is no point at identifying generalization with a learned optimizer’s capabil-
ities of performing well on dissimilar models, thus exhibiting tolerance on
objective functions that are exotic to its training regime.

The purpose of this study is, thus, to extend previous approaches on
meta-learning optimizers for neural networks (Andrychowicz et al., 2016)
by evaluating their generalization capabilities on a variety of tasks that can
be either similar or dissimilar to the ones that they’re trained on. Should these
optimizers perform well on dissimilar tasks it could be sufficiently proved
that the learning how to learn paradigm discussed earlier is already followed
in contemporary research efforts. On the other hand, should these learned
optimizers perform well only on tasks that are similar to their training set-
tings, it would mean that the corresponding studies resorted on applying
a form of the learning what to learn paradigm. This would indicate that a
meta-learning strategy that captures and uses information concerned with
the exact process of learning eludes modern research, thus stressing the need
of further studies towards this direction.

The structure of the rest of this thesis consists of four more chapters. In
Chapter 2 a detailed overview of past and recent studies in the field of meta-
learning is provided along with a detailed list of meta-learning strategies and
fields of application. The meta-learning problem statement that is considered
in this study and the approach we followed are located in Chapter 3 and the
experiments that complement this study are presented in Chapter 4. Finally,
the conclusions of our work are summed up in Chapter 5 which also contains
speculative future work that could follow in the field of meta-learning.



5

Chapter 2

Related Work

2.1 Introduction

Versatility is, arguably, one of the cornerstones of human intelligence, as it
allows us to be capable of performing well in a variety of different things via
lifelong acquisition of the relevant skills and proficiencies. While this holds
true for human intelligence it lies far from the truth when it comes to current
AI systems that, despite achieving superhuman performance at mastering a
single skill (Krizhevsky, Sutskever, and Hinton, 2012, Silver et al., 2016, Wu
et al., 2016) they ultimately fail when trying to combine these different skills
in a single system. Therefore, there is an apparent lack of adaptability in
modern AI systems which, unlike humans, are not yet capable of performing
well to new and unseen situations where their previously-acquired experi-
ence is of little use. But how could we overcome a problem like this and
develop an AI that can acquire the aforementioned skills of adaptability and
versatility?

When opting to build an AI system that is able to master a single skill
from scratch the norm of providing it with large amounts of data and time in
order to gain enough experience is followed. While this procedure is possi-
ble and desirable for tasks of limited scope, it is not affordable in a multi-task
regime where we want our agents to acquire several different skills fast while
harnessing previous experience instead of learning each task separately. Ac-
quiring a skill from scratch is something that is rarely present in human in-
telligence, in which the procedure of learning a new task is always based on
related tasks that we mastered earlier in our lives through experience and
reuse of strategies that have proved to be successful in the past (Lake et al.,
2016). As more and more skills are learned, humans become less and less
dependent on the amount of examples needed to be provided during the
learning phase of a new skill which, ultimately, involves less trial-and-error.
This form of learning can be described as learning how to learn or simply meta-
learning and is an essential step towards building intelligent agents that can
achieve lifelong learning by replicating the aforementioned functions present
in human learning.

The key challenge of meta-learning is learning to acquire a more effi-
cient learning procedure by leveraging prior experience in a data-driven way
(Vanschoren, 2018). The data used for this type of learning is often called
meta-data and contains information about previous learning tasks and learned



6 Chapter 2. Related Work

models. This can include data about how the learning algorithms were con-
figured (e.g. choice of hyperparameters, model architectures, etc.) and how
the trained models were evaluated (e.g. performance metrics, parameter val-
ues, etc.). This data can be later used in order to provide valuable knowledge
from which optimal models for new tasks can be learned. Therefore, we are
trying to develop a strategy that promotes fast and data-efficient learning of
a new task by leveraging prior experience concerning the learning procedure
of other tasks. While it is important to note that data efficiency is highly de-
pendent on the similarity between the new task and the previous ones, there-
fore implying no "free lunch" (Wolpert and Macready, 1997, Giraud-Carrier
and Provost, 2005) presence, there are always ways to use prior experience
in real-world tasks.

2.2 Meta-Learning in Neural Networks: A brief his-
torical overview

Work in the field of meta-Learning began in the late 1980s and early 1990s
with the now legacy works of Schmidhuber (Schmidhuber, 1987, Schmid-
huber, 1992, Schmidhuber, 1993) that enhanced recurrent neural networks
with the ability to alter their own weights. This was achieved by using these
weights as additional input data, thus allowing the networks to reactively
modify them upon observing their own errors. Despite this strategy facil-
itating the optimization of both the network and the training algorithm by
simply applying gradient descent, its high computational requirements ren-
dered it obsolete.

Later on (Bengio, Bengio, and Cloutier, 2002), the Bengio brothers tried re-
placing backpropagation with parametric rules which seemed more biologically-
plausible for updating the network weights. These rules were learned using
gradient descent or evolution across a selection of tasks.

Finally, the last study on meta-learning that signaled the end of its infancy
period came with a subsequent work (Hochreiter, Younger, and Conwell,
2001) that introduced the use of LSTM (Long Short-Term Memory) networks
(Hochreiter and Schmidhuber, 1997a) as multi-layer perceptron optimizers.

Despite its slow start, meta-learning has recently become a hot topic within
the machine learning research community with works focusing on a variety
of problems. These works include using meta-learning strategies for hyper-
parameter (Maclaurin, Duvenaud, and Adams, 2015) and neural network
optimization (Li and Malik, 2017, Wichrowska et al., 2017, Chen et al., 2017),
deep learning architecture search (Zoph and Le, 2016, Baker et al., 2016, Ne-
grinho and Gordon, 2017), few-shot learning (Vinyals et al., 2016, Ravi and
Larochelle, 2016, Finn, Abbeel, and Levine, 2017, Hariharan and Girshick,
2017) and speeding-up reinforcement learning (Duan et al., 2016, Wang et al.,
2016, Finn, Abbeel, and Levine, 2017). Several of these approaches will be
discussed in later sections of this work.



2.3. Meta-Learning Strategies 7

2.3 Meta-Learning Strategies

As it was previously noted, meta-learning involves a training phase involv-
ing a large number of tasks followed by a test phase on an entirely new
task. This is an approach that is distinct from the standard approaches in
machine learning that involve splitting the available data into two parts and
then using them for training and testing the model respectively. Thus, in
meta-learning there are two different optimization pipelines - optimizing the
learner, which is responsible for learning new tasks and optimizing the meta-
learner which is responsible for training the learner. The different methods
for meta-learning can be categorized into one of four classes: recurrent mod-
els, metric learning, optimizer learning and model-initialization learning.

FIGURE 2.1: Various meta-learning applications (Source:
https://bair.berkeley.edu/blog/)

2.3.1 Recurrent Models

This approach involves training a recurrent model, usually an LSTM (Hochre-
iter and Schmidhuber, 1997b), which is trained on a single task sequentially
and is then exposed to new inputs produced from the distribution of that
specific task. An example of this procedure in image classification would be
to provide the recurrent model with the sequence of (image, label) pairs of a
specific dataset, followed by novel examples that it has to classify.

FIGURE 2.2: Example of the recurrent model approach where
xt are the input vectors and yt are their corresponding labels

(Source: Santoro et al., 2016)

In this scenario the meta-learner is trained using gradient descent, while
the learner simply unrolls the LSTM. This strategy despite being the most



8 Chapter 2. Related Work

generic and widely used one (Santoro et al., 2016, Mishra et al., 2017, Duan
et al., 2016, Wang et al., 2016) has shown to be the most inefficient one due to
the absence of a learning strategy for the learner network which instead has
to be learned from scratch.

2.3.2 Metric Learning

The goal of this strategy is to learn a metric space which can facilitate the
learning procedure in general and has been mostly applied on few-shot clas-
sification tasks. The intuition behind this approach is that comparing an ex-
ample image with the others that are available can enhance classifiers with
sample-efficiency. However, as mere comparisons between images in pixel
space seem to be unreliable, a joint metric space needs to be learned via a
Siamese network (Koch, 2015). Here the meta-learner is trained using gra-
dient descent while the learner takes the form of a comparison scheme in
the aforementioned metric space. While this strategy has been successful on
few-shot classification tasks (Vinyals et al., 2016), it has yet to demonstrate
any results in other domains.

2.3.3 Optimizer Learning

Another approach involves learning an optimizer (Hochreiter, Younger, and
Conwell, 2001) and is a method in which a meta-learner network (typically a
recurrent network) learns to update a learner network in a way that facilitates
the latter’s learning. This meta-learning strategy has been applied on neural
network optimization with general success (Li and Malik, 2016, Andrychow-
icz et al., 2016, Ravi and Larochelle, 2016, Li and Malik, 2017, Chen et al.,
2017, Wichrowska et al., 2017). The merit of this approach is that, instead
of having to choose among the different available optimization algorithms
for neural networks that also requires extensive hyperparameter finetuning,
the optimization process is instead learned from scratch. This form of meta-
learning will form the central element of this thesis.

2.3.4 Model-initialization Learning

A final approach to meta-learning, inspired from the success of unsuper-
vised pre-training in computer vision, is learning proper model initializa-
tions (Finn, Abbeel, and Levine, 2017). This strategy, dubbed Model-Agnostic
Meta-Learning, instead of having to learn an optimization algorithm from
scratch, it involves the learning of an initial representation space that can
offer fast adaptability to new tasks.



2.4. Learning to Optimize 9

2.4 Learning to Optimize

The approach to meta-learning that involved the learning of optimization al-
gorithms began with studies by Li & Malik (Li and Malik, 2016) and Andrychow-
icz et al. (Andrychowicz et al., 2016) which independently proposed rele-
vant frameworks that used reinforcement learning and supervised learning
respectively. These studies focused on the existence of certain common ele-
ments among the different continuous optimization algorithms. These com-
monalities are:

• Operation in an iterative fashion where the iterate is a single point in
the domain of the objective function.

• Random initiation of the iterate point across the domain.

• Modification of the iterate at each iteration using a step vector update
rule

• An update rule that takes into account the previous or current gradients
of the objective function

FIGURE 2.3: General structure of optimization algorithms

Despite certain common elements that do exist, a thing that varies from
algorithm to algorithm is the form of the update formula. Therefore, learning
this very formula is the ultimate objective of learning an optimization algo-
rithm. The aforementioned approaches chose to model this update formula
as a neural net, the weights of which would correspond to the learned opti-
mizer. Neural networks were selected due to their representation capacity as
they are proven to act as universal function approximators thus being able
to model any update formula and due to their ability to allow for efficient
search through a simplistic training process in the form of backpropagation.
In order for the optimizers to be evaluated a meta-loss was introduced in
the form of the sum of the objective function values during the whole train-
ing phase. However the learned optimizers that were generated from these
works showed little examples of generalization capability.

While those earlier works solely focused on evaluating their learned op-
timizers on standard computer vision datasets such as MNIST a later work



10 Chapter 2. Related Work

(Chen et al., 2017) that used an approach similar to the previous two, i.e.
meta-learning optimizers using recurrent neural networks, applied them on
a variety of black-box optimization tasks and compared their performance
with mainstream Bayesian optimization techniques. Despite outperforming
the latter, training for very long horizons still proved to be a demanding task.
Moreover, the inability of training the model with variable input dimension
proved the choice of this strategy to be prohibitive in high dimensions where
training optimizers for every dimension separately would not be feasible.

The first trial towards answering the aforementioned problems came through
the work of Wichrowska et al. (Wichrowska et al., 2017) who used a hierar-
chical RNN architecture that proved to be more efficient in terms of memory
and computation overhead and also more capable of generalizing to a va-
riety of tasks. However, this study gave rise to new limitations relevant to
the robustness of the learned optimizers as, in contrast to their hand-crafted
counterparts, they seemed to fail to make any progress in later stages of the
training phase. Moreover, the former severely underperformed the latter in
terms of wall clock time thus rendering their small gains in terms of perfor-
mance irrelevant.

In a subsequent work (Ravi and Larochelle, 2016) LSTM-based models
for meta-learning were applied on several few-shot learning tasks by us-
ing an approach which allowed learning both a successful update rule for
the devised optimizer and a robust initialization for the parameters of the
learner. The approach of this study managed to outperform the relevant
baselines and proved to be a competitive alternative to the then state-of-the-
art in few-shot learning. However, it ultimately failed to satisfy the need for
meta-learned optimizers that could generalize better by performing well in a
variety of tasks, e.g. tasks with varying dataset sizes and varying classes, as
its focus was limited on the few-shot and few-classes setting.

The last known study that focused on the "learning optimization algo-
rithms" approach to meta-learning was compiled by the same team that ini-
tiated research in the field (Li and Malik, 2017). This work focused on try-
ing to learn flexible optimization algorithms that could show some task-
independence in a way that they could be adaptive to a variety of differ-
ent settings by using a reinforcement learning strategy called guided policy
search. The meta-learned optimizer that was proposed in this study was
capable of both outperforming previous meta-learned optimizers trained us-
ing supervised learning (Andrychowicz et al., 2016) and generalizing to tasks
that were unrelated to those it was trained on. However, its results were of
limited scope as they were tested solely on shallow neural networks.



11

Chapter 3

Approaches for Meta-learning

3.1 Problem Definition

The norm in the field of machine learning is to express each task in the form
of an optimization problem, where the desired outcome is to optimize an
objective function f (θ) over some domain θ ∈ Θ. If the objective function
describes the loss or regret during a specific point in time t we refer to the
optimization problem as a minimization problem, i.e. a problem where the
goal is to infer a method θ∗ = argminθ∈Θ f (θ) that minimizes the aforemen-
tioned objective function (in this case referred to as the loss function). The
most usual way of finding such a method (usually referred to as a minimizer)
is through the usage of gradient descent or any of its variants, a procedure
which leads to a sequence of updates of the following form:

θt+1 = θt − αt∇ f (θt) (3.1)

Usually generic rules such as the above are not able to capture second-order
information and are, thus, restricted to using gradients as their sole means
of figuring out the optimal parameters for the minimizer. However, sev-
eral efforts have been made towards designing rules that are better-suited
to specific problem distributions. For instance, problems concerning the op-
timization of deep neural networks where the optimization space is high-
dimensional and the objective functions are usually non-convex, several opti-
mization algorithms such as momentum (Nesterov, 1983, Tseng, 1998), Rprop
(Riedmiller and Braun, 1993), Adagrad (C. Duchi, Hazan, and Singer, 2011),
RMSprop (N. Dauphin et al., 2015) and ADAM (Kingma and Ba, 2014) have
surfaced.

The goal of this study is to provide alternatives to those aforementioned
commonly used hand-designed update rules which, albeit performing well
by exploiting the structure of the problems, they fail to generalize to tasks
that lie outside of that scope. In order to do so, we propose to learn these
update rules which we will, from now on, define as the optimizer model mφ.
This optimizer can be specified by a set of parameters φ. This rule can be
used to update the parameters of our predefined loss function (referred to
from now on as the optimizee) in the following form:

θt+1 = θt + gt(∇ f (θt), φ) (3.2)



12 Chapter 3. Approaches for Meta-learning

This intuition behind the equation above is that the optimizer mφ is con-
stantly provided with information regarding the performance of the opti-
mizee f and, by constantly updating its parameters φ, it varies its update
rule proposals in order to infer the optimal update rule for updating the op-
timizee parameters θ, thus maximizing its performance.

3.2 Learning Optimizers using Recurrent Neural
Networks

As we previously stated, we opt to replace hand-written optimizers by incor-
porating a learned update rule to the generic form of an optimization algo-
rithm we described in Figure 2.3. In our case, this learned update will take
the form of a recurrent neural network (RNN) or, more specifically, it will be
a LSTM. Having a RNN variant take the role of the optimizer can be justified
by the fact that gradient descent is, at its very essence, a sequence of updates
on separate states that are present in-between. Therefore, instead of using
one of the normally used optimizers, we train a RNN to model a new one.

The reason behind our choice of using a RNN instead of a simple neural
network is because we want our optimizer to reason about previous events
that occurred during the optimization process and use that information to-
wards shaping better update rules in the future. Recurrent neural networks,
due to their ability to form loops with themselves, allow information to per-
sist, a feature that is not found in plain neural networks. As we can see in
Figure 3.1 a recurrent neural network is essentially a collection of copies of
the same network which passes information from earlier points in time to
later ones. Thus, the rolled RNN in the left part of Figure 3.1 during the
time step t can be thought of as being equivalent to its depiction in the right
part of the same Figure that pictures its loop unrolled through time steps 0
to t. Therefore the first requirement of having an optimizer architecture that
supports sequential updates is, thus, met.

FIGURE 3.1: An example of recurrent neural network
with some input xt and output ht in its rolled (left part
of figure) and unrolled state (right part of figure) (Source:
http://colah.github.io/posts/2015-08-Understanding-

LSTMs/)

However, in order for our optimizer to work we need it to be able to main-
tain information about its previous states, i.e. information about the way its



3.2. Learning Optimizers using Recurrent Neural Networks 13

previous suggested updates affected the performance of the optimizee. Due
to this, instead of choosing a simple RNN as our optimizer, we opted for
one of its variants the Long Short-Term Memory network, or simply LSTM.
The LSTM’s most prominent characteristic which is called the cell state (i.e.,
a memory-like feature that allows the network to store and access informa-
tion) allows an optimizer of the same architecture to satisfy the second re-
quirement of having access to previous states during its learning phase. The
satisfaction of this requirement ensures that an optimal update rule is being
learned based on previous experience. The idea that knowing a history of
gradients would be beneficial to the proposed gradient updates was inspired
by the way momentum (Nesterov, 1983) works.

In order to stress that our problem lies on training the optimizer, we are
going to directly parameterize it. Therefore, the final optimizee parameters can
be written as θ∗( f , φ) where φ are the optimizer parameters and f is the func-
tion we are trying to optimize (or simply the optimizee). The expected loss
with relation to the optimizer can be written as:

L(φ) = E f←−D

[
f (θ∗( f , φ))

]
(3.3)

where f is drawn according to some distribution D of functions.

As it is already mentioned, our LSTM optimizer network m outputs the
update steps gt and is parameterized by φ, while its state at time t can be de-
noted as ht. Since the function in Equation (3.3) only relates the expected with
the final parameter values of the optimizer it is important to alternatively
model our objective to be dependent on the entire optimization trajectory for
a given time frame T. Therefore we can model it as such:

L(φ) = E f

[ T

∑
t=1

wt f (θt)

]
where,

θt+1 = θt + gt[
gt

ht+1

]
= m(∇t, ht, φ)

(3.4)

In the definition above, wt ∈ R≥0 are weights that correspond to each time-
step t, so that formulations in Equations (3.3) and (3.4) can be the same for
wt = 1[t = T]. However, the gradient of the objective function will be non-
zero only when wt 6= 0 which means that, since wt = 1[t = T], the only
time-step for which this holds true will be the final optimization step, thus
rendering Backpropagation Through Time (BPTT) inefficient. Therefore, it is
important to ensure that the gradients of the timesteps t ∈ [0, T − 1] are also
non-zero, in order to also gain information about all the previous gradients
along the optimization trajectory. We can fix this issue by relaxing our objec-
tive function so that wt > 0 along this trajectory and, for simplicity purposes,
it is assumed in our experiments that wt = 1 for every time-step t. Lastly, we



14 Chapter 3. Approaches for Meta-learning

FIGURE 3.2: Computational graph used for computing the op-
timizer gradients (Source: Andrychowicz et al., 2016)

refer to the gradient of the optimizee f with respect to its parameters θ at
time-step t, ∇θ f (θt) as simply ∇t, again, for simplicity purposes.

An approach towards minimizing our objective L(φ) is to apply gradi-
ent descent on φ by computing the gradient estimate ∂L(φ)/∂φ using a ran-
domly sampled function f and applying backpropagation. The computa-
tional graph on which we are going to apply the backpropagation algorithm
can be seen in Figure 3.2 where two distinct types of lines can be observed.
The solid lines refer to the parts of the computation graph where gradient
flow is allowed, whereas the dashed lines correspond to the parts where it
is dropped. Despite our formulation indicating that the optimizee gradients
∇t are dependent on the optimizer parameters φ this has been proven to
over-complicate the process of computing the optimizer’s gradients. There-
fore we assume that the contribution of these gradients can be negligible and,
thus, can be ignored, i.e. ∂∇t/∂φ = 0. This simplification allows us to avoid
second-derivative computations related to the objective function, which is a
quite expensive task, and does not seem to hamper the optimizer training as
indicated by our results later on.

3.2.1 Parameter Sharing & Preprocessing

Due to our optimizer network needing to provide updates for deep neural
networks consisting of tens of thousands of parameters, thus imposing hid-
den state and parameter requirements of an enormous scale, we decided to
use the same strategy of parameter sharing employed in (Andrychowicz et
al., 2016) and (Ravi and Larochelle, 2016) which is called coordinate network
architecture. This approach allows our LSTM optimizer to operate coordinate-
wise on the objective function parameters in a fashion similar to the way RM-
Sprop and ADAM updates work. This is achieved by employing a small
network for every input coordinate (i.e. the gradient w.r.t. a single distinct
optimizee parameter) the hidden and cell state values of which are isolated
from those of the rest networks which, however, share the same parameters.
Thus, not only is each coordinate updated by the same rule that depends
only on its respective history but it also allows the optimizer to be invariant



3.2. Learning Optimizers using Recurrent Neural Networks 15

to the order in which its parameters are updated. An instance of the LSTM
optimizer described here can be viewed in Figure 3.3.

FIGURE 3.3: Example of coordinatewise LSTM optimizer. No-
tice that all LSTM parameters are shared while hidden states

are separated. (Source: Andrychowicz et al., 2016)

Despite hand-written optimizers being robust to extremely varying input
and output magnitudes, deep neural networks, which naturally disregard
small input values in favor of bigger ones, are susceptible to gradient explo-
sion, i.e. the problem where high gradient values accumulate resulting in ex-
treme parameter updates during the training phase which render it unstable
thus preventing it from learning. Due to this problem being more prevalent
in our architecture of different input coordinates we opted to use a prepro-
cessing schedule for normalizing the optimizer’s inputs (both gradients and
loss history). We, thus, applied the same preprocessing formula that was
used in (Andrychowicz et al., 2016) and (Ravi and Larochelle, 2016)

∇k ←−
{
( log(|∇|)

p , sgn(∇)) if |∇| ≥ e−p

(−1, ep∇), otherwise

where p > 0 is a parameter indicating the threshold under which gradients
are disregarded. This preprocessing also allows us to separate the informa-
tion regarding their magnitude from their sign, the latter being only mean-
ingful for gradients.

In the next chapter, several comparisons between the LSTM optimizer
described here and its standard counterparts will follow with respect to their
performance on several datasets. Comments on their generalization capabil-
ities will also be provided when applicable.





17

Chapter 4

Experiments & Results

4.1 Experimental Setup

Here some details regarding our experimental setup will be provided. The
model architectures, the learning methods used as well as the hyperparam-
eters selection are all addressed in the first two paragraphs, while details
about the comparisons that follow in Sections 4.2-4.5 are provided in the third
paragraph.

All trained optimizers in our experiments constitute of two LSTM lay-
ers each layer of which consists of 20 hidden units. These optimizers where
trained based on the minimization criterion of Equation (3.4) using the vari-
ant of backpropagation detailed in Section 3. For minimizing the objective
we used the ADAM optimizer with a learning rate chosen by performing
random search on a specific range of values ∈ [1.0, 10−5].

Whenever possible during the training phase, we used early stopping in
order to prevent the optimizer from overfitting. Upon the end of each epoch,
which consists of 100 training iterations, we evaluate the performance of the
optimizer, the parameters of which are frozen during this process. The best
optimizer is selected based on its final test loss and its average performance
is reported based on an entirely novel sampled test set.

Our meta-learned optimizers are compared against a selection of stan-
dard hand-written ones that are commonly used in Deep Learning tasks,
namely SGD, RMSprop, ADAM and SGD with Nesterov Momentum. The
learning rates of these optimizers were fine-tuned for each problem and the
results that are reported correspond to the best-scoring of them in terms of
their task-specific final error. When there were more hyperparameters in-
volved other than the learning rate, the default values from the optim pack-
age in Torch7 were used. Finally, imitating the Deep Learning trends, we
chose to initialize the optimizee parameter values by sampling from an IID
Gaussian distribution.

The code for our experiments is made available through the following
link on Github: https://github.com/kostagiolasn/MetaLearning-MScThesis
under the MIT License.

https://github.com/kostagiolasn/MetaLearning-MScThesis


18 Chapter 4. Experiments & Results

4.2 Quadratic Loss Functions

A method of evaluating the performance of a model at fitting a dataset that is
standard in the machine learning community comes in the form of loss func-
tions. High deviance between the predictions of our model and the actual
values within the dataset corresponds to high loss function values. However
a model can learn to fit the data better, thus providing more accurate pre-
dictions, if assisted by an optimizer whose purpose is to facilitate the min-
imization of the loss function. As it is desirable for a loss function to intu-
itively represent the error rate between the predictions of a model and the
corresponding real values, it is usually expressed as a quadratic form in the
deviations of the variables of interest and their desired values. This approach
is tractable because it results in linear first-order conditions.

Thus, at first, we considered the task of optimizing synthetic quadratic
functions defined in the 10-dimensional space. In this particular setting the
minimization objective was simply a squared error loss in the form of:

f (θ) = ‖Wθ − y‖2
2

where W and y correspond to 10x10 matrices and 10-dimensional vectors re-
spectively, sampled from an IID Gaussian distribution. We trained our opti-
mizers on randomly created functions from this distribution and tested them
on freshly sampled functions of the same family. Each objective was opti-
mized for 100 iterations, while the meta-learned optimizers were trained for
20 iterations, i.e. we are updating the trained optimizer’s parameters every
20 steps by unrolling the LSTM. The total epochs also amount to 100. No
form of preprocessing or postprocessing was necessary for this specific task.

Results for this task are shown in 4.1 in the form of learning curves one
for each of the optimizers used. These curves were produced by averag-
ing the performances of each optimization algorithm over a large number
of test functions. Our meta-learned optimizer’s performance corresponds to
the solid learning curve, while the dashed learning curves display the per-
formance of its standard baseline counterparts. By inspecting the graph it is
clear that, in this specific scenario, our meta-learned optimizer considerably
outperforms the baselines.

4.3 MNIST and Related Datasets

Following the previous experiments we decided to examine whether meta-
learned optimizers can be applied to neural network optimization tasks. We,
therefore, opted to learn to optimize a small neural network consisting of
a single hidden layer of 20 units on the MNIST (LeCun and Cortes, 2010)
dataset, which we later tested on different network architectures, training
procedures and datasets.

The MNIST handrwitten digits dataset consists of 60.000 training exam-
ples and 10.000 test examples of 28x28 greyscale images, each one displaying



4.3. MNIST and Related Datasets 19

FIGURE 4.1: Comparison between standard optimizers and
learned optimizer (LSTM) - Black-box 10-variable quadratic

function

a handwritten number digit. An example of the dataset instances and their
corresponding labels can be seen in Figure 4.2.

The minimization objective f used in this task was the crossentropy of
Multi-layer Perceptron, paremeterized by θ:

f (θ) = − 1
n

M

∑
c=1

yo,clog(po,c)

where M is the number of classes (here M = 10), y is a binary indicator vec-
tor where yo,c = 1 if class label c is the correct classification for observation o
and p is the neural network output probability for observation o belonging to
class c. The choice of this function was facilitated by its wide use in classifica-
tion settings. Intuitively, as the predictions of a model diverge from the real
class label of the corresponding example, the cross-entropy loss increases.

We estimated both the values of the objective function f and its gradients
∂ f (θ)/∂θ using mini-batches of randomly selected 128 examples. We used
the sigmoid activation function for the hidden layer units and we initialized
the network’s parameters θ by randomly sampling from an IID Gaussian dis-
tribution. In order to be consistent with previous experiments we used 100
iterations for optimizing the optimizee, and updated the optimizer every 20
iterations. For time-efficiency purposes we used a total of only 20 epochs, a
decision which didn’t seem to affect the procedure at all. The preprocessing
strategy described in Section 3 was also used for rescaling the outputs of the
LSTM by a factor of 0.1.



20 Chapter 4. Experiments & Results

FIGURE 4.2: Examples from the MNIST dataset and their
corresponding labels (Source: https://corochann.com/mnist-

dataset-introduction-1138.html

FIGURE 4.3: Comparison between standard optimizers and
learned optimizer (LSTM) - MNIST

The learning curves for this specific setting are shown in Figure 4.3. While



4.3. MNIST and Related Datasets 21

the performance exhibited by RMSprop, ADAM and SGD with Nesterov mo-
mentum in this task was roughly the same and plain SGD failed to achieve
a notable performance, our meta-learned optimizer outperforms these base-
lines by a significant margin.

4.3.1 Generalization to Different Architectures

Furthermore, we decided to inspect the generalization capabilities of our
meta-learned optimizer to different network architectures. Indeed, our meta-
learned optimizer managed to outperform the baselines on the MNIST dataset,
despite it being trained on a different setting architecture-wise. The relevant
performance comparisons are shown in Figures 4.4, 4.5 in which a network
consisting of 40 hidden units instead of 20 and a network with two hidden
layers were used, respectively. The key feature of these experiments is that
our meta-learned optimizer is very robust in terms of altering the neural net-
work architecture, especially when more than one layers are stacked simu-
lating current Deep Learning trends.

FIGURE 4.4: Comparison between standard optimizers and
learned optimizer (LSTM) - MNIST (40 hidden units)

4.3.2 Generalization to Different Learning Dynamics

We also provided an experiment setting in which we altered the activation
function of our neural network, thus changing the learning dynamics. In
this specific task, our meta-learned optimizer seemed to show a consider-
able amount of generalization capabilities, despite failing to outperform the



22 Chapter 4. Experiments & Results

FIGURE 4.5: Comparison between standard optimizers and
learned optimizer (LSTM) - MNIST (2 hidden layers)

SGD optimizer and its Nesterov Momentum variant. The relevant results are
shown in Figure 4.6.

FIGURE 4.6: Comparison between standard optimizers and
learned optimizer (LSTM) - MNIST (ReLU activation function)



4.3. MNIST and Related Datasets 23

4.3.3 Generalization to Different MNIST-like Datasets

Following the previous experiments we decided to test the generalization
capabilities of our MNIST meta-learned optimizer when applied to tasks re-
lated to MNIST. Should our optimizer perform reasonably well in these set-
tings it would mean that, instead of limiting itself by adapting solely on the
particularities of the MNIST dataset, it is capable of generalizing its perfor-
mance to a selection of optimization landscapes that are similar to it. It is
important to note that all the baseline optimizers were trained and had their
learning rates fine-tuned on these specific tasks in contrast with our learned
optimizer that was trained on the original MNIST dataset and is, thus, oper-
ating outside of its training regime.

First of all we tested our learned optimizer’s performance on the Fash-
ionMNIST (Xiao, Rasul, and Vollgraf, 2017) dataset. Although MNIST bares
many similarities to MNIST in consisting of 60.000 test examples and 10.000
test examples in the form of 28x28 greyscale images, each one of which be-
longs to 10 categories, it is anything but redundant. More specifically, Fash-
ionMNIST, as one can deduce from its name, consists of examples belonging
to different kinds of clothes, thus encapsulating a harder problem than rec-
ognizing digits and represents more broadly modern computer vision tasks.
Examples from the FashionMNIST data are shown in Figure ??.

The learning curves for this specific task are depicted in Figure 4.8. By
examining this graph it is made clear that our meta-learned optimizer out-
performs all of the baseline optimizers and, thus, projects considerable gen-
eralization capabilities when applied on novel settings that correspond to
similar optimization landscapes to the ones it was trained on.

The next dataset on which we tested the performance of our meta-learned
optimizer on MNIST was the EMNIST (Extended MNIST) dataset (Cohen et
al., 2017). This set of datasets was created in order to form a selection of more
challenging classification tasks for benchmarking modern computer vision
systems. It consists of 28x28 greyscale images of handwritten number digits
or letters, thus sharing the same structure and parameters with the original
MNIST task. In order to differentiate a bit from MNIST we decided to use the
EMNIST Letters subset of EMNIST which consists of 145.600 character im-
ages belonging to 26 letter classes. Examples of the EMNIST Letters dataset
are shown in Figure 4.9. In this experiment we opted for a train-test split of
80-20% respectively.

The learning curves for this specific task are depicted in Figure 4.10. In
this experiment we can see that the meta-learned optimizer on MNIST learns
more rapidly than the baseline optimizer but its generalization capabilities
seem to reach a plateau after epoch 100. Despite this fact, our meta-learned
optimizer is outperformed only by the SGD optimizer with Nesterov mo-
mentum and even that happens during the latest stages of the experiment,
thus indicating that a certain degree of generalization is possible. Further-
more, it should be stressed that having the standard optimizers trained on a
dataset almost double the size of MNIST could have played a pivotal role in
enabling them to gain much more task-specific information than the meta-
learned optimizer and, consequently, perform better. Another factor that



24 Chapter 4. Experiments & Results

FIGURE 4.7: Examples from the FashionMNIST
dataset. Each class takes three rows. (Source:

https://github.com/zalandoresearch/fashion-mnist)

possibly prevented the meta-learned optimizer to generalize could be that
the number of classes between the MNIST and the EMNIST dataset was very
different, with the former consisting of examples belonging to 10 classes and
the latter consisting of examples belonging to 26 classes.

4.4 More Complex Datasets

4.4.1 Generalization on Entirely Different DMMNBatasets

Lastly, we decided to test the generalization capabilities of our MNIST meta-
learned optimizer in tasks that are entirely different than those examined
before. More specifically we examined its performance on the widely-used
CIFAR-10 (Krizhevsky, Nair, and Hinton, 2014) and SVHN (Netzer et al.,
2011) datasets.

The CIFAR-10 dataset consists of 60.000 32x32 coloured images divided
in 10 classes (6.000 image examples per class) the 50.000 of which comprise
the training set while the rest 10.000 comprise the test set. It is important to



4.4. More Complex Datasets 25

FIGURE 4.8: Comparison between standard optimizers and
learned optimizer (LSTM) - FashionMNIST (LSTM optimizer

was trained on MNIST)

FIGURE 4.9: Examples from the EMNIST Letters dataset.
Here examples that depict the letter B are shown

(Source:https://statsmaths.github.io/stat395-f17/class20/).

note that these examples depict non-overlapping real-world objects, thus be-
longing to classes that are mutually exclusive, and have nothing in common
in terms of structure and parameters with the examples of the MNIST-like
datasets.

The SVHN (Street View House Numbers) dataset is another real-world
32x32 coloured image dataset that consists of examples that are semantically
similar to those of MNIST, in that they are small images of cropped digits.
However, the amount of data it incorporates is an order of magnitude larger
than that of MNIST, since it comprises of a training set of 73257 and a test



26 Chapter 4. Experiments & Results

FIGURE 4.10: Comparison between standard optimizers and
learned optimizer (LSTM) - EMNIST Letters (LSTM optimizer

was trained on MNIST).

set of 26032 images. Furthermore, in contrast to MNIST, the SVHN dataset
is related to a real world problem that still remains unsolved. Examples for
each of these datasets can be viewed in Figures and respectively.

The results of the CIFAR-10 image labeling task in terms of the learn-
ing curves of each optimizer tested are shown in Figure 4.13. The take-
aways from this specific experiment is that, although the learned optimizer
on MNIST outperforms both Adam and RMSprop it ultimately fails to out-
perform SGD and its Nesterov momentum variant that were trained on this
setting, despite displaying roughly the same performance during the early
parts of the training phase. It should be also noted that, apart from a relative
fluctuation early on, both the learned optimizer and those that outperform
it seize to display any difference in terms of learning performance, a feature
that can be attributed to the low representation power of the neural network
architecture employed. Nevertheless, it can also be observed that the dif-
ference margin in terms of performance between the three top-performing
optimizers is very small.

The learning curves of each optimizer for the SVHN image labeling task
are displayed in Figure 4.14. Although the performance of the learned op-
timizer on MNIST is shown to keep up with that of the baseline optimizers
trained on this task during the early stages of the training phase, it ultimately
manages to just keep up with the performance of the SGD optimizer. The
assumptions about it failing to outperform the other standard optimizers
which were discussed in the previous paragraph can be also transferred to
this setting. A notable difference between this and the previous task is that



4.4. More Complex Datasets 27

FIGURE 4.11: Examples from the CIFAR-10 dataset
along with their corresponding labels (Source:

https://www.cs.toronto.edu/ kriz/cifar.html).

the network architecture seems to have enough representation power for the
problem as the top-performing optimizer, SGD with Nesterov Momentum,
appears to increase its performance as the training phase progresses.

Ultimately, the meta-learned optimizer on MNIST didn’t show enough
generalization capabilities to outperform the baseline optimizers either when
tested on CIFAR-10 or on SVHN. This can be attributed to two facts: firstly, it
is natural for optimizers that use task-specific knowledge to achieve greater
performance in those very tasks than optimizers trying to generalize to un-
familiar tasks to them (different number of parameters and image structure),
thus leading to an unfair comparison between them. Secondly, it could also
be the case that the optimization landscapes corresponding to these tasks are
simply way too exotic for optimizers that were learned and, thus, adapted
on unrelated tasks to handle. All in all, when applied on tasks stemming
from the same distribution, the learned optimizer seemed to generalize well
and achieved notable cross-task performance that in most cases resulting in
it outperforming the baseline hand-written optimizers.



28 Chapter 4. Experiments & Results

FIGURE 4.12: Examples from the SVHN dataset (Source:
http://ufldl.stanford.edu/housenumbers/)

FIGURE 4.13: Comparison between standard optimizers and
learned optimizer (LSTM) - CIFAR-10 (LSTM optimizer was

trained on MNIST).



4.4. More Complex Datasets 29

FIGURE 4.14: Comparison between standard optimizers and
learned optimizer (LSTM) - SVHN (LSTM optimizer was

trained on MNIST).





31

Chapter 5

Conclusion

5.1 Discussion

The aims of this study were twofold: the first objective was to extend earlier
work (Andrychowicz et al., 2016) which demonstrated that optimizer design
could be casted as a learning problem by testing an optimizer’s generaliza-
tion capabilities at optimizing functions stemmed from the same distribu-
tion. The second objective was to systematically examine whether achieving
considerable degrees of cross-task transfer between unrelated settings was
feasible, which was also a claim made by that paper, albeit being reinforced
with limited evidence.

From our experiments it is easily made clear that when applied on the
same family of functions to which it was trained on, a learned optimizer gen-
erally outperforms the baseline hand-written optimizers that are extensively
used in literature by a large margin. This was showcased by the general-
ization performance of our learned optimizer on MNIST when tested on the
MNIST-like datasets FashionMNIST and EMNIST that contained image ex-
amples whose structure and parameters had very much in common with
MNIST. Our learned optimizer consistently outperformed the standard op-
timizers that were trained on these very tasks despite acting outside of its
training regime.

Furthermore, the meta-learned optimizer also showed a remarkable de-
gree of transfer when changes were made in the network architecture-wise
in the MNIST task. However, the same can’t be said for the tasks that in-
volved testing the optimizer on unfamiliar settings that corresponded to real-
world object recognition tasks unrelated to MNIST. The datasets CIFAR-10
and SVHN that contained very differently-structures images and were re-
lated to optimization problems with a vastly larger number of parameters
prevented the learned optimizer from generalizing, thus confirming the No-
free lunch theorem.

All in all, however, it is natural to say the learned optimizer’s superiority
on related tasks is a fact that reinforces the idea of promoting the choice to
train neural learned optimizers instead of opting for hand-written ones in
most single-task scenarios, which form the majority of the settings in deep
learning literature.



32 Chapter 5. Conclusion

5.2 Future Work

A feature that eludes modern meta-learned optimizer is that of generalizing
to unrelated tasks. Being able to transfer knowledge between tasks is a key
element of human intelligence and could lead to lifelong learning models
replacing single-task ones that demand being trained from scratch for each
task they encounter due to catastrophic forgetting.

A possible source of inspiration could be the field of developmental psy-
chology, in which infant learning is thoroughly examined. Recent studies
(Smith and Slone, 2017) have showcased that, until 2 years old, humans are
bombarded with images that comprise almost entirely of human faces, there-
fore indicating to a visual experience that corresponds to an abundance of
examples belonging to a single class of objects that are not labeled by any
supervisor. As humans grow older their visual experience is altered, entail-
ing the learning of visually recognizing objects belonging to a vast number of
classes through limited paradigms and scarce, but prevalent, labeling. Hu-
mans, however, that did not come in contact with faces earlier in their life,
mainly due to visual impairments, seem to develop problematic visual recog-
nition systems (Maurer, Mondloch, and Lewis, 2007), thus indicating the im-
portance of these earlier visual encounters at shaping the visual recognition
systems in our brains.

Developing feature extraction processes from largely unlabeled data is
a thing that eludes solution in modern machine learning literature and is
the main target of study in the field of unsupervised learning. Progress in
this field could, thus, possibly facilitate imitating the way the human visual
system is developed by allowing meta-optimizers to firstly acquire valuable
cross-task transferable knowledge that could later enable further specializa-
tion depending on the task at hand.

Furthermore the generalization capabilities of a meta-learned optimizer
could also be facilitated by progress in transfer learning. A lately developed
method dubbed "Model-agnostic Meta-learning" (Finn, Abbeel, and Levine,
2017) has succeeded at developing a strategy that focuses on learning neural
network parameter initializations that are model-agnostic and, thus, can fa-
cilitate learning any task by allowing flexibility that does not depend on the
properties of each task. However, no transfer is available once the model is
learned, therefore pressing the need for future approaches to meta-learning
that could possibly pave the way for lifelong learning. Maybe relating the
meta-objective to the steps needed for a model to perform well in a variety of
tasks (possibly in the form of distance traveled within the loss space) could
be a key element of flexible meta-learned models in the future.

Another possible future extension to our study that not only could drive
the field of meta-learning forward but can also potentially benefit the whole
field of machine learning would be associated with steps in the so-called field
of machine learning explainability. Although meta-learning techniques that
focus on having a neural network acting as the optimizer (e.g. our case) cer-
tainly do have their place in the research world, their learning outcomes are



5.2. Future Work 33

often black-box optimizers the drawbacks of which are twofold: firstly, de-
spite outperforming standard optimizers in single tasks they ultimately fail
to provide us with information relevant to how their structure differs from
their hand-written counterparts. Consequently, any intuition they could pro-
vide us towards hand-crafting better optimizers is absent. Being able to ex-
plain what exactly do neural networks learn could make the aforementioned
elements of the learned neural network optimizers accessible, therefore their
is hope that relevant research in the field of neural network model explain-
ability will eventually shed light on these shortcomings.

Lastly, more systematic studies must be done towards scaling meta-learning
beyond toy problems or few-shot learning tasks. Optimization in modern
deep learning settings can involve backpropagating through thousands of
gradient steps a thing that leads to impractical training of meta-learned op-
timizers in terms of time and computational costs and could introduce insta-
bility. Therefore, shortening the training process should also be the aim of
future work.





35

Bibliography

Andrychowicz, Marcin et al. (2016). Learning to learn by gradient descent by
gradient descent. arXiv: 1606.04474 [cs.NE].

Baker, Bowen et al. (2016). Designing Neural Network Architectures using Rein-
forcement Learning. arXiv: 1611.02167 [cs.LG].

Bengio, Y, Samy Bengio, and Jocelyn Cloutier (2002). “Learning a Synaptic
Learning Rule”. In: DOI: 10.1109/IJCNN.1991.155621.

C. Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradi-
ent Methods for Online Learning and Stochastic Optimization”. In: Jour-
nal of Machine Learning Research 12, pp. 2121–2159.

Chen, Yutian et al. (2017). “Learning to Learn without Gradient Descent by
Gradient Descent”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Pro-
ceedings of Machine Learning Research. International Convention Cen-
tre, Sydney, Australia: PMLR, pp. 748–756. URL: http://proceedings.
mlr.press/v70/chen17e.html.

Cohen, Gregory et al. (2017). EMNIST: an extension of MNIST to handwritten
letters. arXiv: 1702.05373 [cs.CV].

Duan, Yan et al. (2016). RL2: Fast Reinforcement Learning via Slow Reinforcement
Learning. arXiv: 1611.02779 [cs.AI].

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. arXiv: 1703.03400 [cs.LG].

Giraud-Carrier, Christophe and Foster Provost (2005). “Toward a justifica-
tion of meta-learning: Is the no free lunch theorem a show-stopper?” In:
Proceedings of the ICML-2005 Workshop on Meta-learning.

Hariharan, Bharath and Ross Girshick (2017). “Low-Shot Visual Recognition
by Shrinking and Hallucinating Features”. In: 2017 IEEE International Con-
ference on Computer Vision (ICCV). DOI: 10.1109/iccv.2017.328. URL:
http://dx.doi.org/10.1109/ICCV.2017.328.

Hochreiter, Sepp and Jürgen Schmidhuber (1997a). “Long short-term mem-
ory”. In: Neural computation 9.8, pp. 1735–1780.

Hochreiter, Sepp and Jürgen Schmidhuber (1997b). “Long Short-term Mem-
ory”. In: Neural computation 9, pp. 1735–80. DOI: 10.1162/neco.1997.9.
8.1735.

Hochreiter, Sepp, A. Steven Younger, and Peter R. Conwell (2001). “Learning
To Learn Using Gradient Descent”. In: IN LECTURE NOTES ON COMP.
SCI. 2130, PROC. INTL. CONF. ON ARTI NEURAL NETWORKS (ICANN-
2001. Springer, pp. 87–94.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980. arXiv: 1412.6980. URL: http:
//arxiv.org/abs/1412.6980.

http://arxiv.org/abs/1606.04474
http://arxiv.org/abs/1611.02167
http://dx.doi.org/10.1109/IJCNN.1991.155621
http://proceedings.mlr.press/v70/chen17e.html
http://proceedings.mlr.press/v70/chen17e.html
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1703.03400
http://dx.doi.org/10.1109/iccv.2017.328
http://dx.doi.org/10.1109/ICCV.2017.328
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


36 BIBLIOGRAPHY

Koch, Gregory R. (2015). “Siamese Neural Networks for One-Shot Image
Recognition”. In:

Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton (2014). “The CIFAR-10
dataset”. In: online: http://www. cs. toronto. edu/kriz/cifar. html.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., pp. 1097–1105. URL: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf.

Lake, Brenden M. et al. (2016). “Building Machines That Learn and Think
Like People”. In: CoRR abs/1604.00289. arXiv: 1604.00289. URL: http:
//arxiv.org/abs/1604.00289.

LeCun, Yann and Corinna Cortes (2010). “MNIST handwritten digit database”.
In: URL: http://yann.lecun.com/exdb/mnist/.

Li, Ke and Jitendra Malik (2016). Learning to Optimize. arXiv: 1606 . 01885
[cs.LG].

— (2017). Learning to Optimize Neural Nets. arXiv: 1703.00441 [cs.LG].
Maclaurin, Dougal, David Duvenaud, and Ryan Adams (2015). “Gradient-

based Hyperparameter Optimization through Reversible Learning”. In:
Proceedings of the 32nd International Conference on Machine Learning. Ed. by
Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning
Research. Lille, France: PMLR, pp. 2113–2122. URL: http://proceedings.
mlr.press/v37/maclaurin15.html.

Maurer, Daphne, Catherine J Mondloch, and Terri L Lewis (2007). “Sleeper
effects”. In: Developmental Science 10.1, pp. 40–47.

Mishra, Nikhil et al. (2017). A Simple Neural Attentive Meta-Learner. arXiv:
1707.03141 [cs.AI].

N. Dauphin, Yann et al. (2015). “RMSProp and equilibrated adaptive learning
rates for non-convex optimization”. In: arXiv 35.

Negrinho, Renato and Geoffrey J. Gordon (2017). “DeepArchitect: Automati-
cally Designing and Training Deep Architectures”. In: CoRR abs/1704.08792.

Nesterov, Yurii (1983). “A method of solving a convex programming prob-
lem with convergence rate O(1/sqr(k))”. In: Soviet Mathematics Doklady
27, pp. 372–376. URL: http://www.core.ucl.ac.be/\~{}nesterov/
Research/Papers/DAN83.pdf.

Netzer, Yuval et al. (2011). “Reading Digits in Natural Images with Unsuper-
vised Feature Learning”. In:

Ravi, Sachin and Hugo Larochelle (2016). “Optimization as a Model for Few-
shot Learning”. In: URL: http://openreview.net/pdf?id=rJY0-Kcll.

Riedmiller, M. and H. Braun (1993). “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm”. In: IEEE International
Conference on Neural Networks, 586–591 vol.1. DOI: 10.1109/ICNN.1993.
298623.

Santoro, Adam et al. (2016). One-shot Learning with Memory-Augmented Neural
Networks. arXiv: 1605.06065 [cs.LG].

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1604.00289
http://arxiv.org/abs/1604.00289
http://arxiv.org/abs/1604.00289
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1703.00441
http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v37/maclaurin15.html
http://arxiv.org/abs/1707.03141
http://www.core.ucl.ac.be/\~{}nesterov/Research/Papers/DAN83.pdf
http://www.core.ucl.ac.be/\~{}nesterov/Research/Papers/DAN83.pdf
http://openreview.net/pdf?id=rJY0-Kcll
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.1109/ICNN.1993.298623
http://arxiv.org/abs/1605.06065


BIBLIOGRAPHY 37

Schmidhuber, Jurgen (1987). Evolutionary Principles in Self-Referential Learning.
On Learning now to Learn: The Meta-Meta-Meta...-Hook. Diploma Thesis.

Schmidhuber, Jürgen (1992). “Learning to Control Fast-weight Memories:
An Alternative to Dynamic Recurrent Networks”. In: Neural Comput. 4.1,
pp. 131–139. ISSN: 0899-7667. DOI: 10.1162/neco.1992.4.1.131. URL:
http://dx.doi.org/10.1162/neco.1992.4.1.131.

Schmidhuber, Jürgen (1993). “A Neural Network That Embeds Its Own Meta-
Levels”. In: In Proc. of the International Conference on Neural Networks ’93.
IEEE.

Silver, David et al. (2016). “Mastering the Game of Go with Deep Neural
Networks and Tree Search”. In: Nature 529.7587, pp. 484–489. ISSN: 0028-
0836. DOI: 10.1038/nature16961.

Smith, Linda B. and Lauren K. Slone (2017). “A Developmental Approach to
Machine Learning?” In: Frontiers in Psychology 8, p. 2124. ISSN: 1664-1078.
DOI: 10.3389/fpsyg.2017.02124. URL: https://www.frontiersin.org/
article/10.3389/fpsyg.2017.02124.

Tseng, Paul (1998). “An Incremental Gradient(-Projection) Method with Mo-
mentum Term and Adaptive Stepsize Rule”. In: SIAM J. on Optimization
8.2, pp. 506–531. ISSN: 1052-6234. DOI: 10.1137/S1052623495294797. URL:
http://dx.doi.org/10.1137/S1052623495294797.

Turing, A. M. (1995). “Computers &Amp; Thought”. In: ed. by Edward A.
Feigenbaum and Julian Feldman. Cambridge, MA, USA: MIT Press. Chap. Com-
puting Machinery and Intelligence, pp. 11–35. ISBN: 0-262-56092-5. URL:
http://dl.acm.org/citation.cfm?id=216408.216410.

Vanschoren, Joaquin (2018). Meta-Learning: A Survey. arXiv: 1810.03548 [cs.LG].
Vinyals, Oriol et al. (2016). Matching Networks for One Shot Learning. arXiv:

1606.04080 [cs.LG].
Wang, Jane X et al. (2016). Learning to reinforcement learn. arXiv: 1611.05763

[cs.LG].
Wichrowska, Olga et al. (2017). Learned Optimizers that Scale and Generalize.

arXiv: 1703.04813 [cs.LG].
Wolpert, David and William Macready (1997). “Macready, W.G.: No Free

Lunch Theorems for Optimization. IEEE Transactions on Evolutionary
Computation 1(1), 67-82”. In: Evolutionary Computation, IEEE Transactions
on 1, pp. 67 –82. DOI: 10.1109/4235.585893.

Wu, Yonghui et al. (2016). Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation. arXiv: 1609 . 08144
[cs.CL].

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. arXiv: 1708.
07747 [cs.LG].

Zoph, Barret and Quoc V. Le (2016). Neural Architecture Search with Reinforce-
ment Learning. arXiv: 1611.01578 [cs.LG].

http://dx.doi.org/10.1162/neco.1992.4.1.131
http://dx.doi.org/10.1162/neco.1992.4.1.131
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.3389/fpsyg.2017.02124
https://www.frontiersin.org/article/10.3389/fpsyg.2017.02124
https://www.frontiersin.org/article/10.3389/fpsyg.2017.02124
http://dx.doi.org/10.1137/S1052623495294797
http://dx.doi.org/10.1137/S1052623495294797
http://dl.acm.org/citation.cfm?id=216408.216410
http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1703.04813
http://dx.doi.org/10.1109/4235.585893
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1611.01578

	Abstract
	Acknowledgements
	Introduction
	Related Work
	Introduction
	Meta-Learning in Neural Networks: A brief historical overview
	Meta-Learning Strategies
	Recurrent Models
	Metric Learning
	Optimizer Learning
	Model-initialization Learning

	Learning to Optimize

	Approaches for Meta-learning
	Problem Definition
	Learning Optimizers using Recurrent Neural Networks
	Parameter Sharing & Preprocessing


	Experiments & Results
	Experimental Setup
	Quadratic Loss Functions
	MNIST and Related Datasets
	Generalization to Different Architectures
	Generalization to Different Learning Dynamics
	Generalization to Different MNIST-like Datasets

	More Complex Datasets
	Generalization on Entirely Different DMMNBatasets


	Conclusion
	Discussion
	Future Work

	Bibliography

